For a typical wall with two or more rows of anchors constructed from the top down, the general procedure is to (1) design for the final condition with multiple rows of anchors and (2) check the design for the various stages of construction. The required horizontal component of each anchor force can be calculated using […]
Рубрика: HIGHWAY ENGINEERING HANDBOOK
Structure Dimensions and External Stability
The design of anchored walls involves a determination of several factors. Included are the size, spacing, and depth of embedment of vertical wall elements and facing; the type, capacity, spacing, depth, inclination, and corrosion protection of anchors; and the structural capacity and stability of the wall, wall foundation, and surrounding soil mass for all intermediate […]
Earth Pressure and Surcharge Loadings
The choice of lateral earth pressures used for design should take into account the method and sequence of construction, rigidity of the wall-anchor system, physical characteristics and stability of the ground mass to be supported, allowable wall deflections, space between anchors, anchor prestress, and potential for anchor yield. For stable ground masses, the final lateral […]
ANCHORED WALL DESIGN
Anchored walls are made up of the same elements as cantilevered walls but are furnished with one or more tiers of anchors for additional lateral support. Anchors may be either prestressed or dead-man type. Tendons or bars extend from the wall face to a region beyond the active zone where they are grouted in place […]
Overall Stability
The overall stability of slopes in the vicinity of walls is considered part of the design of retaining walls. The overall stability of the retaining wall, retained slope, and foundation soil or rock can be evaluated for all walls using limiting equilibrium methods of analysis. AASHTO gives the following requirements: A minimum factor of safety […]
Structure Dimensions and External Stability
Flexible cantilevered walls should be dimensioned to ensure stability against passive failure of embedded vertical elements using a factor of safety of 1.5 based on unfactored loads. Vertical elements must be designed to support the full design earth, surcharge, and water pressures between the elements. In determining the depth of embedment to mobilize passive resistance, […]
Water Pressure and Drainage
Flexible cantilevered walls must be designed to resist the maximum anticipated water pressure. For a horizontal static groundwater table, the total hydrostatic water pressure can be determined from the hydrostatic head by the traditional method. For differing groundwater levels on opposite sides of the wall, the water pressure and seepage forces can be determined by […]
NONGRAVITY CANTILEVERED WALL DESIGN
Nongravity cantilevered walls are those that provide lateral resistance through vertical elements embedded in soil, with the retained soil between the vertical elements usually supported by facing elements. Such walls may be constructed of concrete, steel, or timber. Their height is usually limited to about 15 ft (4.6 m), unless provided with additional support anchors. […]
Estimating Maximum Reinforcement Load Using the ^-Stiffness Method
According to the K0-Stiffness Method, with reference to Dt from Fig. 8.44a and b, the peak load, Tmax (lb/ft), in each reinforcement layer can be calculated with the procedure summarized below (Allen and Bathurst, 2001): Ф(ь = facing batter factor Ф(8 = facing stiffness (actor Pa = atmospheric pressure (a constant to preserve dimensional consistency […]
Kjj-Stiffness Method—A Unified Method for Both Metallic and Polymeric Reinforced Soil Walls
Allen and Bathurst (2001) developed a new methodology for estimating reinforcement loads in both steel and geosynthetic reinforced soil walls known as the K0-Stiffness Method. Figure 8.44a and b, for polymeric and metal reinforcements, respectively, are provided for estimating the reinforcement load distribution with respect to the magnitude of maximum reinforcement tension from the top […]