Multivariate normal distributions

Multivariate normal distributions

A bivariate normal distribution has a PDF defined as

for k = 1 and 2. As can be seen, the two random variables having a bivariate normal PDF are, individually, normal random variables. It should be pointed out that given two normal marginal PDFs, one can construct a bivariate PDF that is not in the form of a bivariate normal as defined by Eq. (2.108).

Multivariate normal distributions Multivariate normal distributions Multivariate normal distributions

According to Eq. (2.17), the conditional normal PDF of X11 x2 can be ob­tained as

(2.109)
>■;

Подпись: 0.1

Подпись: 0 Подпись: p = 0.0 Подпись: 0 Подпись: 2
Multivariate normal distributions
Multivariate normal distributions
Подпись: 0
Multivariate normal distributions
Подпись: p = - 0.8
Multivariate normal distributions
Подпись: 0
Подпись: 0.2
Подпись: 0
Подпись: 2
Подпись: 2
Подпись: p = - 0.4
Подпись: 0.2
Подпись: 2
Подпись: 2
Подпись: 2

.H.

Multivariate normal distributions Multivariate normal distributions Multivariate normal distributions Multivariate normal distributions Multivariate normal distributions Multivariate normal distributions Multivariate normal distributions Multivariate normal distributions Multivariate normal distributions

0.1

Multivariate normal distributionsMultivariate normal distributionsMultivariate normal distributionsMultivariate normal distributionsMultivariate normal distributionsMultivariate normal distributionsFigure 2.26 Three-dimensional plots of bivariate standard normal probability density functions. (After Johnson and Kotz, 1976.)

Multivariate normal distributions

O1 > O2 Oj = O2 O1 < O2

Multivariate normal distributions

 

x2

 

Multivariate normal distributions

в = 135° XJ

 

Multivariate normal distributionsMultivariate normal distributionsMultivariate normal distributionsMultivariate normal distributions

Multivariate normal distributions

Figure 2.27 Contour of equal density of bivariate standard normal probability density func­tions. (After Johnson and Kotz, 1976.)

for —to < x1 < to. Based on Eq. (2.109), the conditional expectation and variance of the normal random variable X11 x2 can be obtained as

E(X1 | x2) = P1 + P12(ff1/V2)(x2 – P2) (2.110)

Var(X11 x2) = (1 – P22) (2.111)

Expressions of the conditional PDF, expectation, and variance for X2 | x1 can be obtained immediately by exchanging the subscripts in Eqs. (2.109) through (2.111).

Подпись: for —TO < x < TO (2.112)

Подпись: , , . IC,-1!1'2 f-(x) = ГПт exp
Подпись: (x f-lx) Cx (x f-lx)

For the general case involving K correlated normal random variables, the multivariate normal PDF is

in which і, = (д1, p.2,…, /гК )t, a К x 1 column vector of the mean values of the variables, with the superscript t indicating the transpose of a matrix or vector, and Cx is a К x К covariance matrix:

^11

012

■ ‘ ‘ p1K

021

022

■ ■ ■ 02K

Pk 1

pK 2

■ ■ ■ °KK_

Cov(X) = С, =

This covariance matrix is symmetric, that is, Pjk = okj, for j = k, where ajk = Cov(Xj, Xk). In matrix notation, the covariance matrix for a vector of random variables can be expressed as

Подпись: (2.113)С, = E [(X — і,)(X — і,)4

Подпись: | R —111'2 ( 1 Ф (z) = (2;) К /2 exp (- 2zt R— z Подпись: for —TO < z < TO Подпись: (2.114)

In terms of standard normal random variables, Zk = (Xk — ik)’ak, the stan­dardized multivariate normal PDF, can be expressed as

in which Rx = Cz = E (ZZ *) is a К x К correlation matrix:

1

P12 ■

■ P1K

P21

1 ■

■ P2K

PK1

PK2 ■

■ 1

Corr(X) = Cov(Z) = Rx =

with pjk = Cov(Zj, Zk) being the correlation coefficient between each pair of normal random variables Xj and Xk. For bivariate standard normal variables,

Multivariate normal distributions Подпись: (2m)!(2n)! minm,n) (2p^)2і 2m+n (m - І)!(n - І)! (2j)! (2m + 1)!(2n + 1)! (2p12)2 j 2m+n P12 (m - І )!(n - j )!(2j + 1)! E [Z2mZ2n+1 ] = 0 (2.115)

the following relationships of cross-product moments are useful (Hutchinson and Lai, 1990):

for m and n being positive integer numbers.

Leave a reply

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>